

Air Quality Assessment Manchester Road, Rochdale

Client: Redrow Homes Lancashire Limited Reference: 3496r1 Date: 6th March 2020

www.red-env.co.uk

Report Issue

Report Title: Air Quality Assessment - Manchester Road, Rochdale

Report Reference: 3496

Field	Report Version					
	1	2	3	4		
Prepared by	Emily Bell					
Position	Air Quality Consultant					
Reviewed by	Emily Pears-Ryding					
Position	Senior Air Quality Consultant					
lssued by	Jethro Redmore					
Position	Director					
Date of Issue	6 th March 2020					
Comments	-					

Heliport Business Park, Liverpool Road, Manchester, M30 7RU

info@red-env.co.uk | 0161 706 0075 | www.red-env.co.uk

This report has been prepared by Redmore Environmental Ltd in accordance with the agreed terms and conditions of appointment. Redmore Environmental Ltd cannot accept any responsibility for any use of or reliance on the contents of this report by any third party.

Executive Summary

Redmore Environmental Ltd was commissioned by Redrow Homes Lancashire Limited to undertake an Air Quality Assessment in support of a residential development on a parcel of land off Manchester Road, Rochdale.

The site is bound to the north by the M62 and to the east and south by the A627(M). This may cause elevated pollution levels due to vehicle exhaust emissions and act as a constraint to residential land use. As such, an Air Quality Assessment has been undertaken in order to determine baseline conditions at the site, consider its suitability for the proposed end-use and inform the masterplan design process.

Dispersion modelling was undertaken in order to predict pollutant concentrations across the proposed development site as a result of emissions from the local highway network. Outputs were subsequently verified using local monitoring data.

The results of the dispersion modelling assessment indicated that predicted pollutant levels were below the relevant criteria across the development. As such, the site is considered suitable for residential use from an air quality perspective.

Based on the assessment results, it is concluded that poor air quality is not considered a constraint to use of the site for residential development.

Table of Contents

1.0	INTRODUCTION	1
1.1	Background	1
1.2	Site Location and Context	1
2.0	LEGISLATION AND POLICY	2
2.1	Legislation	2
2.2	Local Air Quality Management	4
3.0	BASELINE	5
3.1	Introduction	5
3.2	Local Air Quality Management	5
3.3	Air Quality Monitoring	5
3.4	Background Pollutant Concentrations	6
4.0	METHODOLOGY	8
4.1	Introduction	8
4.2	Dispersion Model	8
4.3	Assessment Area	9
4.4	Traffic Flow Data	9
4.5	Emission Factors	12
4.6	Meteorological Data	12
4.7	Roughness Length	12
4.8	Monin-Obukhov Length	13
4.9	Background Concentrations	13
4.10	NO _x to NO ₂ Conversion	13
4.11	Verification	13
5.0	ASSESSMENT	16
6.0	CONCLUSION	17
7.0	ABBREVIATIONS	18

1.0 INTRODUCTION

1.1 <u>Background</u>

- 1.1.1 Redmore Environmental Ltd was commissioned by Redrow Homes Lancashire Limited to undertake an Air Quality Assessment in support of a residential development on a parcel of land off Manchester Road, Rochdale.
- 1.1.2 The site is located in the vicinity of the M62 and A627(M). These may influence air quality conditions at the development location and act as a constraint to residential end use. As such, an Air Quality Assessment was undertaken in order to determine baseline conditions and consider location suitability for the proposals.

1.2 <u>Site Location and Context</u>

- 1.2.1 The site comprises a 211 acre parcel of land off Manchester Road, Middleton, Rochdale, at approximate National Grid Reference (NGR): 389239, 409585. Reference should be made to Figure 1 for a map of the site and surrounding area.
- 1.2.2 It is proposed to develop the site to provide residential units with associated infrastructure.
- 1.2.3 The site is bound to the north by the M62 and to the east and south by the A627(M). This may cause elevated pollution levels due to vehicle exhaust emissions and act as a constraint to residential land use. An Air Quality Assessment was therefore undertaken in order to define baseline conditions, consider site suitability for the proposed end-use and inform the masterplan design process. This is detailed in the following report.

2.0 LEGISLATION AND POLICY

2.1 Legislation

- 2.1.1 The Air Quality Standards Regulations (2010) came into force on 11th June 2010 and include Air Quality Limit Values (AQLVs) for the following pollutants:
 - Nitrogen dioxide (NO₂);
 - Sulphur dioxide;
 - Lead;
 - Particulate matter with an aerodynamic diameter of less than 10µm (PM10);
 - Particulate matter with an aerodynamic diameter of less than 2.5µm (PM_{2.5});
 - Benzene; and,
 - Carbon monoxide.
- 2.1.2 Target Values were also provided for an additional 5 pollutants. These include:
 - Ozone;
 - Arsenic;
 - Cadmium;
 - Nickel; and,
 - Benzo(a)pyrene.
- 2.1.3 Part IV of the Environment Act (1995) requires UK government to produce a national Air Quality Strategy (AQS) which contains standards, objectives and measures for improving ambient air quality. The most recent AQS was produced by the Department for Environment, Food and Rural Affairs (DEFRA) and published in July 2007¹. The AQS sets out Air Quality Objectives (AQOs) that are maximum ambient pollutant concentrations that are not to be exceeded either without exception or with a permitted number of exceedences over a specified timescale. These are generally in line with the AQLVs, although the requirements for the determination of compliance vary.
- 2.1.4 Table 1 presents the AQOs for pollutants considered within this assessment.

¹

The Air Quality Strategy for England, Scotland, Wales and Northern Ireland, DEFRA, 2007.

Table 1	Air Quality Objectives
---------	------------------------

Pollutant	Air Quality Objective				
	Concentration (µg/m³)	Averaging Period			
NO ₂	40	Annual mean			
	200	1-hour mean, not to be exceeded on more than 18 occasions per annum			
PM10	40	Annual mean			
	50	24-hour mean, not to be exceeded on more than 35 occasions per annum			

2.1.5 Table 2 summarises the advice provided in DEFRA guidance² on where the AQOs for pollutants considered within this report apply.

Averaging Period	Objective Should Apply At	Objective Should Not Apply At		
Annual mean	All locations where members of the public might be regularly exposed Building façades of residential properties, schools, hospitals, care	Building façades of offices or other places of work where members of the public do not have regular access Hotels, unless people live there as their		
	homes etc.	permanent residence Gardens of residential properties		
		Kerbside sites (as opposed to locations at the building façade), or any other location where public exposure is expected to be short term		
24-hour mean	All locations where the annual mean objective would apply, together with hotels Gardens of residential properties	Kerbside sites (as opposed to locations at the building façade), or any other location where public exposure is expected to be short term		

Table 2 Examples of Where the Air Quality Objectives Apply

² Local Air Quality Management Technical Guidance (TG16), DEFRA, 2018.

Averaging Period	Objective Should Apply At	Objective Should Not Apply At
1-hour mean	All locations where the annual mean and 24 and 8-hour mean objectives apply. Kerbside sites (for example, pavements of busy shopping streets)	Kerbside sites where the public would not be expected to have regular access
	Those parts of car parks, bus stations and railway stations etc which are not fully enclosed, where members of the public might reasonably be expected to spend one hour or more	
	Any outdoor locations where members of the public might reasonably be expected to spend one hour or longer	

2.2 Local Air Quality Management

2.2.1 Under Section 82 of the Environment Act (1995) (Part IV) Local Authorities (LAs) are required to periodically review and assess air quality within their area of jurisdiction under the system of Local Air Quality Management (LAQM). This review and assessment of air quality involves comparing present and likely future pollutant concentrations against the AQOs. If it is predicted that levels at locations of relevant exposure, as summarised in Table 2, are likely to be exceeded, the LA is required to declare an Air Quality Management Area (AQMA). For each AQMA the LA is required to produce an Air Quality Action Plan, the objective of which is to reduce pollutant concentrations in pursuit of the AQOs.

3.0 **BASELINE**

3.1 Introduction

3.1.1 Existing air quality conditions in the vicinity of the development site were identified in order to provide a baseline for assessment. These are detailed in the following Sections.

3.2 Local Air Quality Management

3.2.1 As required by the Environment Act (1995), Rochdale Borough Council (RBC) has undertaken Review and Assessment of air quality within their area of jurisdiction. This process has indicated that annual mean concentrations of NO₂ are above the AQO within the borough. As such, a number of roads within Rochdale have been included within the Greater Manchester Combined Authority (GMCA) AQMA. This is described as follows:

> "This is the part of the Greater Manchester Combined Authority AQMA located within the Rochdale Borough Council area."

- 3.2.2 The site is bound by the M62 and A627(M) which are included in the AQMA. As such, there is the potential for elevated pollution levels at the proposed development location. This has been considered throughout the assessment.
- 3.2.3 RBC has concluded that concentrations of all other pollutants considered within the AQS are currently below the relevant AQOs. As such, no further AQMAs have been designated.

3.3 <u>Air Quality Monitoring</u>

3.3.1 Monitoring of pollutant concentrations is undertaken by RBC throughout their area of jurisdiction. Recent results recorded in the vicinity of the site are shown in Table 3.

Table 3 Monitoring Results

Monitoring Site		Monitored NO ₂ Concentration (μ g/m ³)			
		2016	2017	2018	
2	Trows Lane	33.3	35.0	28.9	
3	52 Cherrington Drive	29.9	23.4	20.6	
4	Middleton Library	30.9	29.5	26.7	

- 3.3.2 As shown in Table 3, annual mean NO₂ concentrations were below the relevant AQO at the three monitoring locations in recent years. Reference should be made to Figure 2 for a map of the survey positions.
- 3.3.3 RBC do not undertake PM10 monitoring within their administrative extents.

3.4 <u>Background Pollutant Concentrations</u>

3.4.1 Predictions of background NO₂ and PM₁₀ concentrations on a 1km by 1km grid basis have been produced by DEFRA for the entire of the UK to assist LAs in their Review and Assessment of air quality. The proposed development site is partially located in four grid squares. Data for these locations was downloaded from the DEFRA website³. Predicted background NO₂ concentrations are summarised in Table 4.

Grid Square (NGR)	Predicted Background NO ₂ Concentration (μ g/m ³)				
	2018	2020	2025		
388500, 409500	21.67	19.48	15.39		
389500, 409500	20.44	18.49	14.67		
388500, 408500	17.03	15.59	13.07		
389500, 408500	17.27	15.79	12.90		

 Table 4
 Background Pollutant Concentration Predictions - NO2

http://uk-air.defra.gov.uk/data/laqm-background-maps?year=2017.

- 3.4.2 As shown in Table 4, predicted background NO₂ concentrations are below the relevant AQOs at the site.
- 3.4.3 Predicted background PM₁₀ concentrations are summarised in Table 5.

Grid Square (NGR) Predicted Background PM₁₀ Concentration (µg/m³) 2018 2020 2025 388500, 409500 12.42 12.14 11.80 389500, 409500 12.48 12.21 11.88 388500, 408500 11.06 10.80 10.47 389500, 408500 11.66 11.41 11.10

Table 5 Background Pollutant Concentration Predictions - PM₁₀

3.4.4 As shown in Table 5, predicted background PM_{10} concentrations are below the relevant AQO at the site.

4.0 <u>METHODOLOGY</u>

4.1 Introduction

4.1.1 Residential development at the proposed location may lead to the exposure of future occupants to elevated pollution levels. In order to assess whether concentrations are a constraint to residential land use, detailed dispersion modelling was undertaken in accordance with the following methodology.

4.2 Dispersion Model

- 4.2.1 Dispersion modelling was undertaken in order to predict NO₂ and PM₁₀ concentrations across the site using the ADMS-Roads dispersion model (version 4.1.1.0). ADMS-Roads is developed by Cambridge Environmental Research Consultants (CERC) and is routinely used throughout the world for the prediction of pollutant dispersion from road sources. Modelling predictions from this software package are accepted within the UK by the Environment Agency and DEFRA.
- 4.2.2 Modelling was undertaken for 2018 to allow verification against recent monitoring results and 2025 to represent the potential occupation year of the development.
- 4.2.3 The model requires input data that details the following parameters:
 - Assessment area;
 - Traffic flow data;
 - Vehicle emission factors;
 - Spatial co-ordinates of emissions;
 - Street width;
 - Meteorological data;
 - Roughness length (z₀); and,
 - Monin-Obukhov length.
- 4.2.4 These are detailed in the following Sections.

4.3 <u>Assessment Area</u>

- 4.3.1 Ambient concentrations were predicted over the area NGR: 388290, 408400 to 390040,
 410150. One Cartesian grid was used within the model to produce data suitable for contour plotting using the Surfer software package.
- 4.3.2 It should be noted that although the grid only covered the proposed site, road links were extended in order to ensure the impact of all relevant vehicle emissions in the vicinity of the development were considered.
- 4.3.3 Reference should be made to Figure 3 for a graphical representation of the assessment grid extents.

4.4 <u>Traffic Flow Data</u>

- 4.4.1 Traffic data for use in the assessment, including 24-hour Annual Average Daily Traffic (AADT) flows and fleet composition as Heavy Duty Vehicle (HDV) proportion, was obtained from an Air Quality Assessment⁴ undertaken by Redmore Environmental Ltd (Reference: 2171-1r1) for a proposed development immediately south of the site.
- 4.4.2 Baseline traffic data was converted to 2018 and 2025 flows utilising a factor obtained from TEMPro (Version 7.2). This software package has been developed by the DfT to calculate traffic growth throughout the UK.
- 4.4.3 Road widths and vehicle speeds were estimated from aerial photography and UK highway design standards. A summary of the traffic data used in the assessment is provided in Table 6.

Link		24-hour AADT Flow		Prop.	Road Width	Avg. Vehicle
		2018	2025	Fleet (%)	(m)	Speed (km/h)
L1	Rochdale Road Roundabout	10,510	11,375	4.82	8.7	25

Table 6 Traffic Data

⁴ Air Quality Assessment - Stakehill Business Park, Rochdale (2171-1r1), Redmore Environmental, 2019.

Link		24-hour Flow	AADT	HDV Prop. of	Road Width (m)	Avg. Vehicle Speed
		2018	2025	Fleet (%)		(km/h)
L2	A627(M)Eastbound (EB) Slow Phase (SP)	5,809	6,287	4.82	7.1	25
L3	A627(M) EB	5,809	6,287	4.82	6.7	100
L4	A627(M) EB SP	5,809	6,287	4.82	7.3	25
L5	A627(M) Westbound (WB) SP	5,809	6,287	4.82	7.3	25
L6	A627(M) WB	5,809	6,287	4.82	6.7	100
L7	A627(M) WB SP	5,809	6,287	4.82	7.3	25
L8	A672(M) Roundabout	19,783	21,411	7.61	9.3	25
L9	A672(M) Northbound (NB) Slip North of Roundabout	4,237	4,585	4.94	7.0	80
L10	A672(M) NB North of Roundabout	16,947	18,342	4.94	11.1	100
L11	A627(M) NB Slip to M62 Junction 20	16,947	18,342	4.94	10.2	80
L12	Junction 20 Roundabout	28,991	31,377	15.73	9.1	25
L13	M627(M) Southbound (SB) Slip from M62	16,947	18,342	4.94	7.3	80
L14	M627M SB North of Roundabout	16,947	18,342	4.94	9.7	100
L15	A627M SB Slip North of Roundabout	4,237	4,585	4.94	6.7	80
L16	M62 WB east of Roundabout	28,686	31,046	15.73	11.3	100
L17	M62 WB Slip east of Roundabout	7,171	7,762	15.73	7.6	80
L18	M62 WB Slip West of Roundabout	7,324	7,927	15.39	7.1	80
L19	M62 WB West of Roundabout	29,297	31,708	15.39	9.3	100
L20	M62 EB West of Roundabout	29,297	31,708	15.39	9.7	100
L21	M62 EB Slip West of Roundabout	7,324	7,927	15.39	10.1	80
L22	M62 EB Slip East of Roundabout	7,171	7,762	15.73	7.0	80
L23	M62 EB east of Roundabout	28,686	31,046	15.73	11.3	100
L24	A627(M) NB north of M62 Junction 20	11,279	12,208	3.98	7.2	100
L25	A627(M) SB north of M62 Junction 20	11,279	12,208	3.98	7.2	100
L26	M62 WB	43,487	47,066	15.73	9.8	100

Link	Link		AADT	HDV Prop. of	Road Width (m)	Avg. Vehicle Speed
		2018	2025	Fleet (%)	(11)	(km/h)
L27	M62 EB	43,487	47,066	15.73	9.8	100
L28	Rochdale Road	15,233	16,487	2.83	11.2	45
L29	Rochdale Road	15,233	16,487	2.83	10.4	45
L30	Rochdale Road	15,233	16,487	2.83	13.9	25
L31	Rochdale Road	13,331	14,428	2.79	13.1	25
L32	Rochdale Road	13,331	14,428	2.79	10.6	45
L33	Rochdale Road SP to Junction with Hollin Lane	13,331	14,428	2.79	11.2	25
L34	Rochdale Road South SP	13,216	14,303	3.27	11.8	25
L35	Long Street	13,216	14,303	3.27	8.7	40
L36	Hollin Lane	10,467	11,329	1.71	9.3	45
L37	A664 Rochdale Road SP	13,412	14,516	3.41	7.9	25
L38	A664 Rochdale Road	13,412	14,516	3.41	9.7	45
L39	A627M NB South of Roundabout	22,619	24,480	7.61	7.6	100
L40	A627M NB Slip South of Roundabout	5,655	6,120	7.61	7.1	80
L41	A627M SB Slip South of Roundabout	5,655	6,120	7.61	6.6	80
L42	A627M SB South of Roundabout	22,619	24,480	7.61	7.6	100
L43	A627 NB	29,674	32,116	7.61	7.0	100
L44	A627 SB	29,674	32,116	7.61	7.0	100
L45	Bentley Avenue Slow	1,778	1,924	2.16	8.5	25
L46	Bentley Avenue	1,778	1,924	2.16	7.8	40

4.4.4 Reference should be made to Figure 3 for a graphical representation of the road link locations.

4.5 <u>Emission Factors</u>

- 4.5.1 Emission factors for each link were calculated using the relevant traffic flows and the Emissions Factor Toolkit (version 9.0). This has been produced by DEFRA and incorporates COPERT5 vehicle emission factors and fleet information.
- 4.5.2 There is current uncertainty over NO₂ concentrations within the UK, with the implementation of new vehicle emission standards not resulting in the previously expected reduction in roadside levels. Therefore, 2018 emission factors were utilised in preference to the future year in order to provide robust concentration predictions. As predictions for 2018 were verified, it is considered the results are an indication of worst case concentrations during the operation of the proposals.

4.6 <u>Meteorological Data</u>

- 4.6.1 Meteorological data used in the assessment was taken from Manchester Airport meteorological station over the period 1st January 2018 to 31st December 2018 (inclusive). Manchester Airport meteorological station is located at NGR: 381792, 384116, which is approximately 26km south-west of the development. It is anticipated that conditions would be reasonably similar over a distance of this magnitude. The data was therefore considered suitable for an assessment of this nature.
- 4.6.2 All meteorological records used in the assessment were provided by Atmospheric Dispersion Modelling (ADM) Ltd, which is an established distributor of data within the UK. Reference should be made to Figure 4 for a wind rose of utilised meteorological data.

4.7 <u>Roughness Length</u>

- 4.7.1 The z₀ is a modelling parameter applied to allow consideration of surface height roughness elements. A z₀ of 0.5m was used to describe the modelling extents. This value is considered appropriate for the morphology of the area and is suggested within ADMS-Roads as being suitable for 'parkland, open suburbia'.
- 4.7.2 A z₀ of 0.2m was used to describe the meteorological site. This value is considered appropriate for the morphology of the area and is suggested within ADMS-Roads as being suitable for 'agricultural areas (min)'.

4.8 <u>Monin-Obukhov Length</u>

4.8.1 The Monin-Obukhov length provides a measure of the stability of the atmosphere. A minimum Monin-Obukhov length of 30m was used to describe the modelling extents and meteorological site. This value is considered appropriate for the nature of both areas and is suggested within ADMS-Roads as being suitable for 'cities and large towns'.

4.9 Background Concentrations

- 4.9.1 As shown in Table 4 and Table 5, the proposed development site is partially located in four grid squares. The relevant data was reviewed and an annual mean NO₂ background concentration of 17.27µg/m³ and PM₁₀ background concentration of 11.66µg/m³ was chosen for use in the assessment. These were selected to provide a model verification factor closest to 1.
- 4.9.2 Similarly to emission factors, background concentrations from 2018 were utilised in preference to the future year. This provided a robust assessment and is likely to overestimate pollutant concentrations during the operation of the proposal.

4.10 NO_x to NO₂ Conversion

4.10.1 Predicted annual mean NO_x concentrations were converted to NO₂ concentrations using the spreadsheet (version 7.1) provided by DEFRA, which is the method detailed within DEFRA guidance⁵.

4.11 Verification

- 4.11.1 The predicted results from a dispersion model may differ from measured concentrations for a large number of reasons, including:
 - Estimates of background concentrations;
 - Uncertainties in source activity data such as traffic flows and emission factors;
 - Variations in meteorological conditions;
 - Overall model limitations; and,

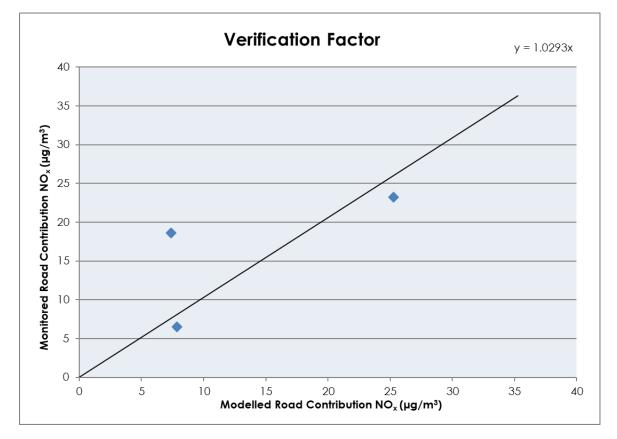
⁵ Local Air Quality Management Technical Guidance (TG16), DEFRA, 2018.

- Uncertainties associated with monitoring data, including locations.
- 4.11.2 Model verification is the process by which these and other uncertainties are investigated and where possible minimised. In reality, the differences between modelled and monitored results are likely to be a combination of all of these aspects.
- 4.11.3 For the purpose of the assessment model verification was undertaken for 2018 using traffic data, meteorological data and monitoring results from this year.
- 4.11.4 RBC undertook monitoring of NO₂ concentrations at three locations within the vicinity of roads included within the model during 2018. The results were obtained and the road contribution to total NO_x concentration calculated following the methodology contained within DEFRA guidance⁶. The monitored annual mean NO₂ concentrations and calculated road NO_x concentrations are summarised in Table 7.

Mo	nitoring Location	Monitored NO ₂ Concentration (µg/m³)	Calculated Road NO _x Concentration (µg/m³)
2	Trows Lane	28.9	23.27
3	52 Cherrington Drive	20.6	6.51
4	Middleton Library	26.7	18.63

Table 7 Verification - Monitoring Results

4.11.5 The annual mean road NO_x concentrations predicted from the dispersion model and the 2018 road NO_x concentrations calculated from the monitoring results are summarised in Table 8.


Table 8 Verification - Modelling Results

Mo	nitoring Location	Calculated Road NO _x Concentration (µg/m³)	Modelled Road NO _x Concentration (µg/m³)
2	Trows Lane	23.27	25.26
3	52 Cherrington Drive	6.51	7.85
4	Middleton Library	18.63	7.37

⁶ Local Air Quality Management Technical Guidance (TG16), DEFRA, 2018.

4.11.6 The monitored and modelled road NO_x concentrations were graphed and the equation of the trendline based on linear progression though zero calculated. This indicated that a verification factor of 1.0293 was required to be applied to all road NO_x modelling results, as shown in Graph 1.

Graph 1 Verification

4.11.7 Monitoring of PM₁₀ concentrations is not undertaken within the assessment extents. The NO_x verification factor was therefore used to adjust PM₁₀ model predictions in lieu of more accurate data in accordance with DEFRA guidance⁷.

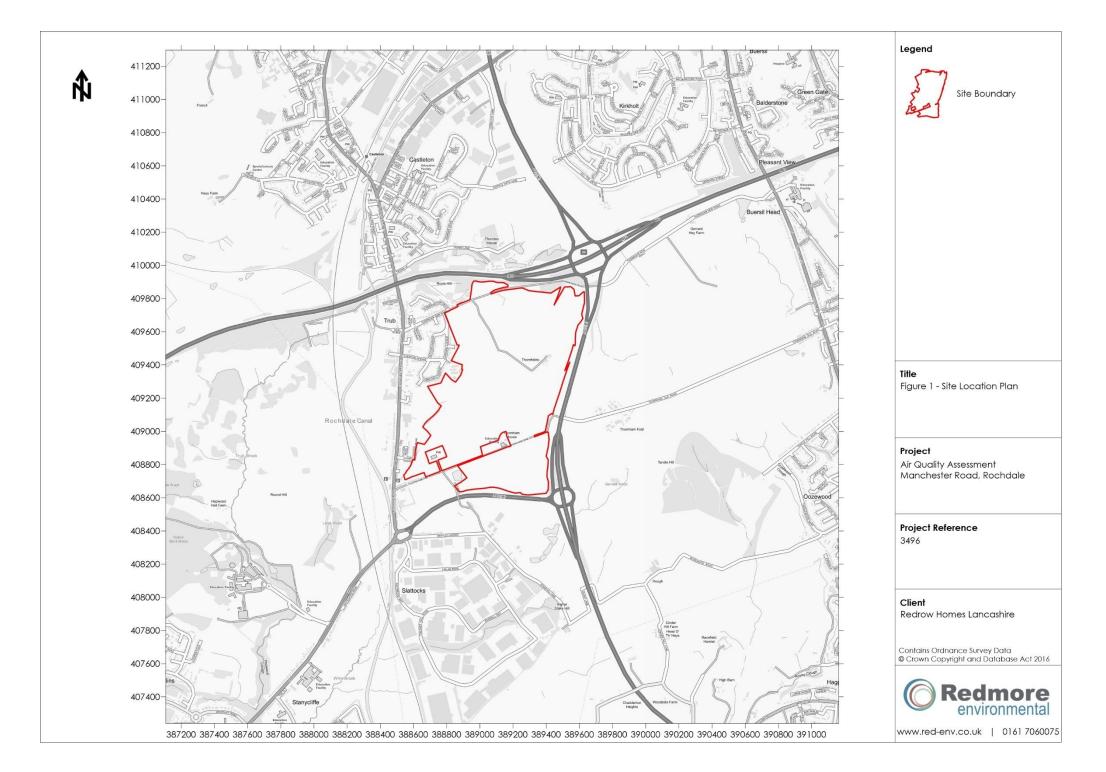
⁷ Local Air Quality Management Technical Guidance (TG16), DEFRA, 2018.

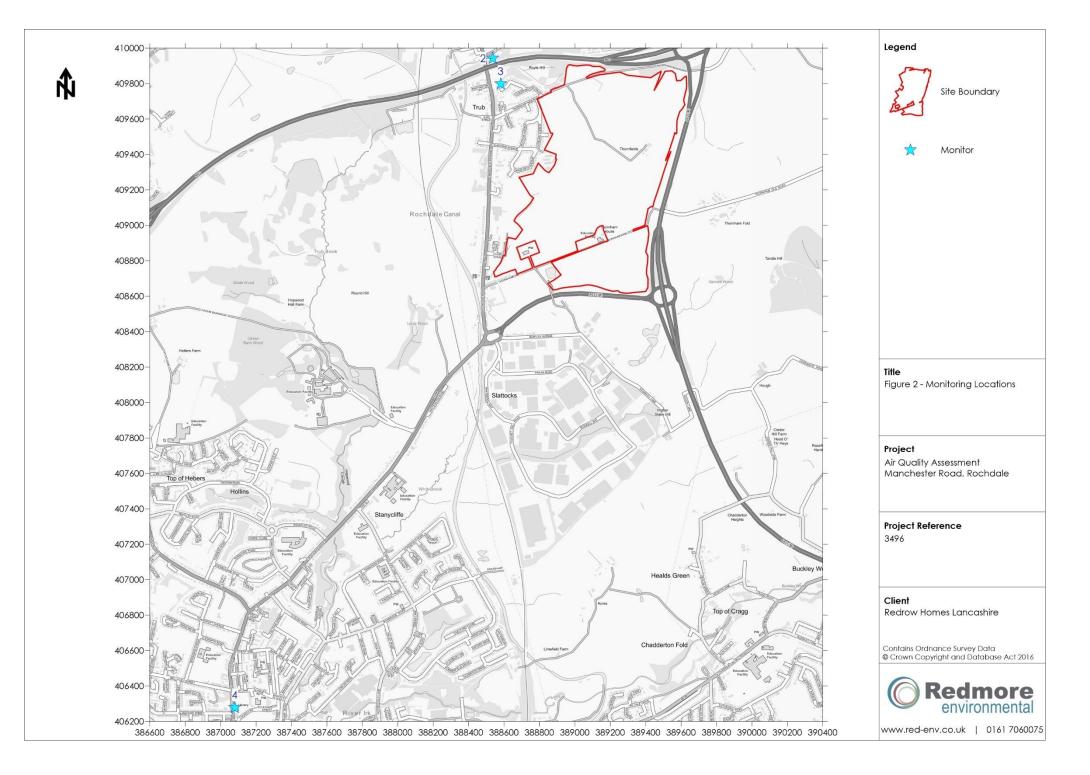
5.0 ASSESSMENT

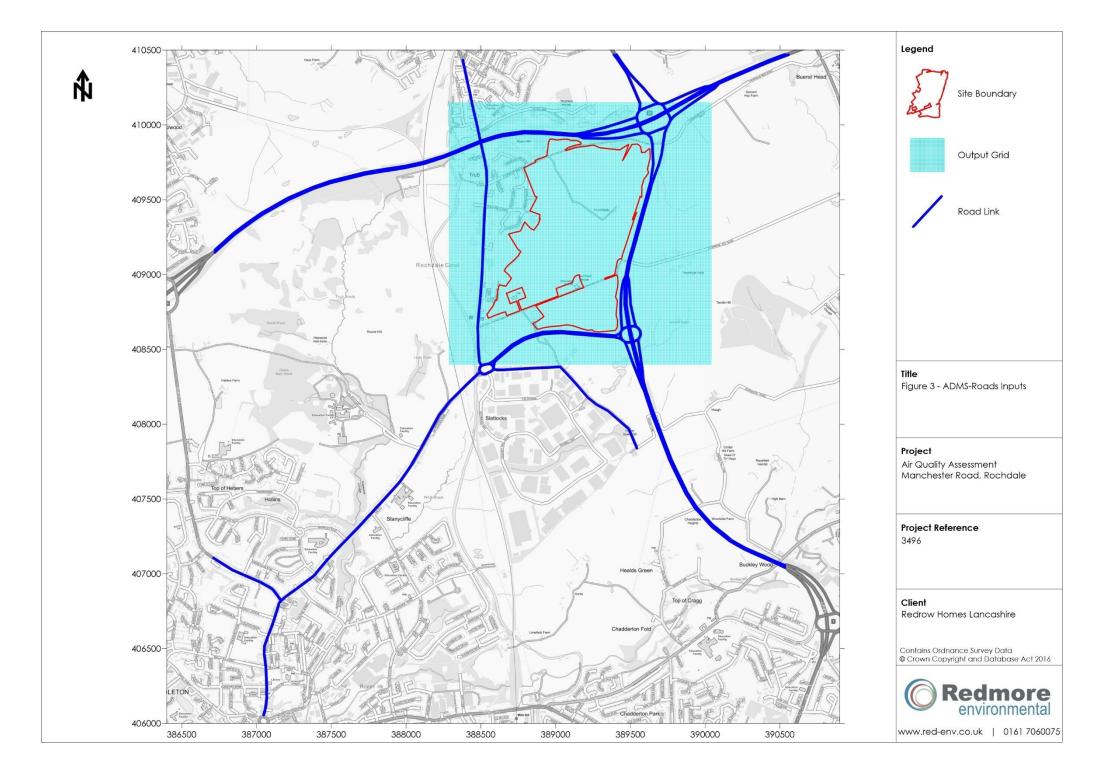
- 5.1.1 Residential development at the proposed location may lead to the exposure of future occupants to elevated pollutant levels. Dispersion modelling was therefore undertaken with the inputs described in Section 4.0 to quantify air quality conditions at the site. Reference should be made to Figure 5 and 6 for graphical representations of the results.
- 5.1.2 As shown in Figure 5, annual mean NO₂ concentrations were predicted to be below the AQO of 40µg/m³ at all locations across the site. The maximum level at the boundary was 28.05µg/m³.
- 5.1.3 As shown in Figure 6, annual mean PM₁₀ concentrations were predicted to be below the AQO of 40µg/m³ at all locations across the site. The maximum level at the boundary was 12.93µg/m³.
- 5.1.4 Based on the assessment results, there are no predicted exceedences of the relevant AQOs for NO₂ or PM₁₀ at any location across the proposed development location. As such, the site is considered suitable for residential use from an air quality perspective without constraint to the masterplan design.

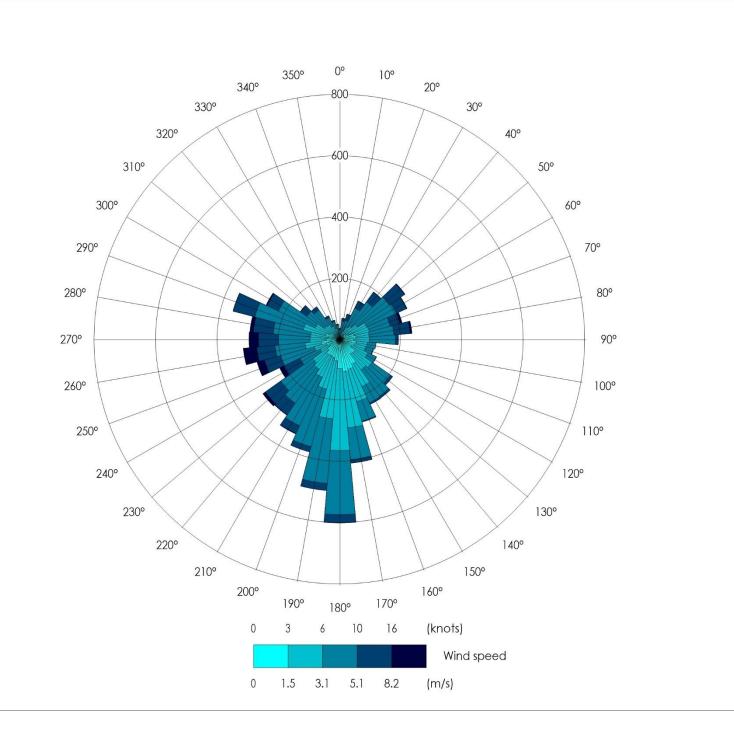
6.0 <u>CONCLUSION</u>

- 6.1.1 Redmore Environmental Ltd was commissioned by Redrow Homes Lancashire Limited to undertake an Air Quality Assessment in support of a residential development on a parcel of land off Manchester Road, Rochdale.
- 6.1.2 The site is bound to the north by the M62 and to the east and south by the A627(M). This may cause elevated pollution levels due to vehicle exhaust emissions and act as a constraint to residential land use. As such, an Air Quality Assessment was undertaken in order to define baseline conditions, consider site suitability for the proposed end use and inform the masterplan design process.
- 6.1.3 Dispersion modelling was undertaken in order to predict pollutant concentrations across the proposed development site as a result of emissions from the local highway network. Outputs were subsequently verified using local monitoring data obtained from RBC.
- 6.1.4 The results of the dispersion modelling assessment indicated that predicted annual mean NO₂ and PM₁₀ concentrations were below the relevant AQOs at all locations across the development.
- 6.1.5 Based on the assessment results, the site is considered suitable for residential use from an air quality perspective without constraint to the masterplan design.




7.0 <u>ABBREVIATIONS</u>


AADT	Annual Average Daily Traffic
ADM	Atmospheric Dispersion Modelling
AQLV	Air Quality Limit Value
AQMA	Air Quality Management Area
AQO	Air Quality Objective
AQS	Air Quality Strategy
CERC	Cambridge Environmental Research Consultants
DEFRA	Department for Environment, Food and Rural Affairs
EB	Eastbound
HDV	Heavy Duty Vehicle
LA	Local Authority
LAQM	Local Air Quality Management
NB	Northbound
NGR	National Grid Reference
NO ₂	Nitrogen dioxide
NOx	Oxides of nitrogen
PM10	Particulate matter with an aerodynamic diameter of less than 10µm
RBC	Rochdale Borough Council
SB	Southbound
SP	Slow Phase
WB	Westbound
Zo	Roughness length

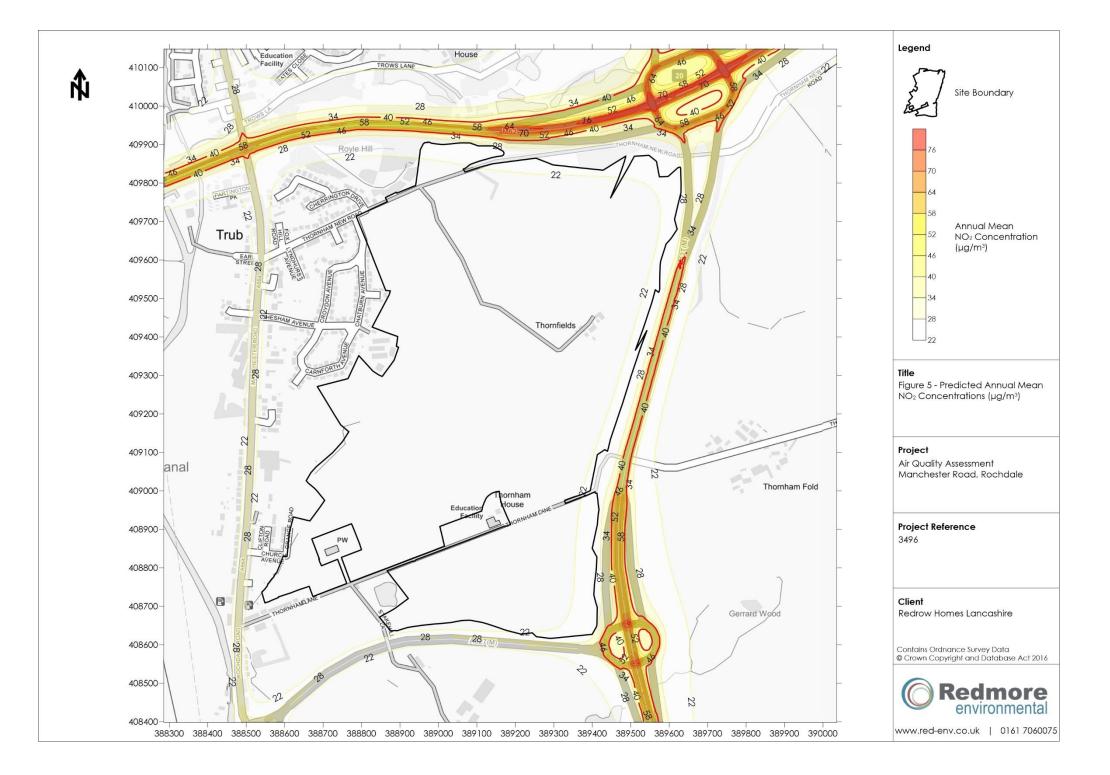


<u>Figures</u>

Title Figure 4 - Wind Rose of 2018 Manchester Airport

Project

Legend


Air Quality Assessment Manchester Road, Rochdale

Meteorological Data

Project Reference 3496

Client Redrow Homes Lancashire

